
Logical Topology

Florian Gudat

Version 43554df, 2024-08-07

Table of Contents

Acronyms . 2

Namespaces. 4

Notation . 5

1. Component Orchestration . 7

Bibliography . 9

Colophon . 10

Version

43554df, 2024-08-07

Editor

Florian Gudat

Module

Mastermodul (C533.2 Compulsory module)
https://modulux.htwk-leipzig.de/modulux/modul/6291

Module Supervisor

Prof. Dr.-Ing. Jean-Alexander Müller

Lecturer

Herr Prof. Dr. rer. nat. Andreas Both
Herr M. Sc. Michael Schmeißer

Institute

Leipzig University of Applied Sciences

Faculty

Computer Science and Media

1 of 10

https://modulux.htwk-leipzig.de/modulux/modul/6291

Acronyms

ACL Access Control List

ACP Access Control Policy

API Application Programming Interface

CRUD Create, Read, Update and Delete

CSS Community Solid Server

DNS Domain Name System

DPC Data Privacy Cockpit

DPV Data Privacy Vocabulary

DPoP Demonstration of Proof-of-Possession

ESS Enterprise Solid Server

GDPR General Data Protection Regulation

HTTPS Hypertext Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

IBM International Business Machines

IEC International Electrotechnical Commission

IE Information Engineering

IP Internet Protocol

ISO International Organization for Standardization

LTS Long-Term Support

N/A Not Applicable

ODRL Open Digital Rights Language

OIDC OpenID Connect

OSI Open Systems Interconnection

RDF Resource Description Framework

2 of 10

ROA Resource-Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Language

ShEx Shape Expressions

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAC Web Access Control

3 of 10

Namespaces
This enumeration lists the prefixes and the associated namespace. It will be used as
the standard syntax for RDF prefixes. When a prefix is followed by a colon symbol,
the part after the colon can be appended to the namespace URI, thereby creating a
new URI.

acl http://www.w3.org/ns/auth/acl#

al dynamic (see [Custom Vocabulary])

claim urn:claim# (see [Custom Vocabulary])

ex example

foaf http://xmlns.com/foaf/0.1/

http http://www.w3.org/2011/http#

interop http://www.w3.org/ns/solid/interop#

ldp http://www.w3.org/ns/ldp#

pim http://www.w3.org/ns/pim/space#

rdfs https://www.w3.org/2000/01/rdf-schema#

solid http://www.w3.org/ns/solid/terms#

st http://www.w3.org/ns/shapetrees#

The prefixes and namespaces enumerated above are applicable to diagrams, list
ings, and inline listings throughout the entirety of the document.

4 of 10

http://www.w3.org/ns/auth/acl#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2011/http#
http://www.w3.org/ns/solid/interop#
http://www.w3.org/ns/ldp#
http://www.w3.org/ns/pim/space#
https://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/ns/solid/terms#
http://www.w3.org/ns/shapetrees#

Notation
The diagrams in this document were generated using Asciidoctor Diagram 2.3.1[1]

and its bundled PlantUML[2] version.

Unless otherwise specified, all framed diagrams will use the UML 2.5.1[3] standard,
constrained by the limitations of PlantUML. As defined in the standard, the following
abbreviations will be utilized to identify the type of UML diagram:

cmp component diagram

sd interaction diagram

stm state machine diagram

In addition to the UML abbreviation, the following abbreviations are used to identify
non-UML diagrams:

dm data model diagram; The information structure is entirely based on RDF,
and will be presented as entity-relationship diagrams in Clive Finkel
stein’s IE[4] notation, with some additional elements. The text in the dou
ble angle brackets will define the entity type (e.g., [Dataset], [Thing], …).
The path labels indicate potential routes through the graph structure,
while the number within the bracket indicates the branch that has been
taken.

wbs work breakdown structure; This diagram is a decompositional diagram[5],
intended for use in hierarchical structures, originally designed as a
project management tool. In this context, it is used to illustrate any kind
of hierarchical structure.

All diagrams and figures presented in this work were created by the author. Any dis
crepancies have been highlighted in the corresponding figures.

5 of 10

[1] https://docs.asciidoctor.org/diagram-extension/latest/

[2] https://plantuml.com

[3] https://www.omg.org/spec/UML/2.5.1

[4] https://plantuml.com/en/ie-diagram

[5] https://plantuml.com/en/wbs-diagram

6 of 10

https://docs.asciidoctor.org/diagram-extension/latest/
https://plantuml.com
https://www.omg.org/spec/UML/2.5.1
https://plantuml.com/en/ie-diagram
https://plantuml.com/en/wbs-diagram

Chapter 1. Component Orchestration
The system components consist of three main parts: the client, the proxy, and the
[Solid Provider] as the server. The client does not require any concept-specific logic
and will be omitted from the system component view. Clients can access the public
endpoint without any changes to the API. The [Solid Provider] should also remain
unaffected and only be accessed through its HTTP APIs. When accessing the stor
ages that exist in the [Solid Provider], it is important to divide them by ownership.
This approach results in two different orchestrations of the system components: one
where the captured data is held in trust, and another where the data is owned by the
client.

1.1. Client as Data Owner

In this approach, the main entry, such as a proxy module manager or router, dele
gates the network request of a monitored resource or endpoint to the proxy module
in charge. The module verifies that the resource exists in storage. If so, the request
module data is appended to a resource container within that storage. Figure 1 illus
trates this topology.

cmp Logical Topology (Client)

«subsystem»
Proxy

«subsystem»
Solid Provider

Proxy Module Manager

Proxy Module 1

Proxy Module 2

Proxy Module n Client
storage

Public Endpoint

Figure 1. Component Diagram of the Logical Topology (Client)

1.2. Trustee as Data Owner

Similar to the previous approach, the main entry delegates the network request for a
monitored resource or endpoint to the responsible proxy module. The module then
verifies the resource’s existence in storage. If applicable, append the request module
data to a resource container in the module’s storage. Figure 2 illustrates this topol
ogy, with the trustee as the data owner.

7 of 10

cmp Logical Topology (Trustee)

«subsystem»
Proxy

«subsystem»
Solid Provider

Proxy Module Manager

Proxy Module 1

Proxy Module 2

Proxy Module n

Client
storage

Module
storage

Public Endpoint

Figure 2. Component Diagram of the Logical Topology (Trustee)

Depending on whether the capturing strategy is permanent or registration-based,
both approaches may require agent identity verification. This requirement is indicated
by a dashed arrow between the proxy module and the storage in both figures.

The trustee-as-data-owner approach eliminates the need for ownership verification
for every requested resource and avoids potential issues with the module’s writing
permissions to the client’s storage. This approach is preferred over the client-as-
data-owner approach, where the module relies on enough permissions.

8 of 10

Bibliography

9 of 10

Colophon
Built with Asciidoctor PDF 2.3.18, Asciidoctor Bibtex 0.9.0 and Asciidoctor Diagram
2.3.1 on linux-musl.

Repository https://github.com/guddii/SEACT/tree/34-docs-excerpt

Revision https://github.com/guddii/SEACT/commit/43554df37fcee739fad09
3318958851a3f1b611d

Build https://github.com/guddii/SEACT/actions/runs/10292410494

10 of 10

https://github.com/guddii/SEACT/tree/34-docs-excerpt
https://github.com/guddii/SEACT/commit/43554df37fcee739fad093318958851a3f1b611d
https://github.com/guddii/SEACT/commit/43554df37fcee739fad093318958851a3f1b611d
https://github.com/guddii/SEACT/actions/runs/10292410494

	Logical Topology
	Table of Contents
	Acronyms
	Namespaces
	Notation
	Chapter 1. Component Orchestration
	Bibliography
	Colophon

