
Data Model

Florian Gudat

Version 43554df, 2024-08-07

Table of Contents

Acronyms . 2

Namespaces. 4

Notation . 5

1. Solid Application Interoperability . 6

2. Entity-Relationship Model. 9

3. Information Retrieval. 11

4. Custom Vocabulary . 12

5. Serialized Data Model . 15

Appendix A: Full Logical Data Model . 21

Appendix B: Community Solid Server Configuration . 22

Bibliography . 25

Colophon . 26

Version

43554df, 2024-08-07

Editor

Florian Gudat

Module

Mastermodul (C533.2 Compulsory module)
https://modulux.htwk-leipzig.de/modulux/modul/6291

Module Supervisor

Prof. Dr.-Ing. Jean-Alexander Müller

Lecturer

Herr Prof. Dr. rer. nat. Andreas Both
Herr M. Sc. Michael Schmeißer

Institute

Leipzig University of Applied Sciences

Faculty

Computer Science and Media

1 of 26

https://modulux.htwk-leipzig.de/modulux/modul/6291

Acronyms

ACL Access Control List

ACP Access Control Policy

API Application Programming Interface

CRUD Create, Read, Update and Delete

CSS Community Solid Server

DNS Domain Name System

DPC Data Privacy Cockpit

DPV Data Privacy Vocabulary

DPoP Demonstration of Proof-of-Possession

ESS Enterprise Solid Server

GDPR General Data Protection Regulation

HTTPS Hypertext Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

IBM International Business Machines

IEC International Electrotechnical Commission

IE Information Engineering

IP Internet Protocol

ISO International Organization for Standardization

LTS Long-Term Support

N/A Not Applicable

ODRL Open Digital Rights Language

OIDC OpenID Connect

OSI Open Systems Interconnection

RDF Resource Description Framework

2 of 26

ROA Resource-Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Language

ShEx Shape Expressions

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAC Web Access Control

3 of 26

Namespaces
This enumeration lists the prefixes and the associated namespace. It will be used as
the standard syntax for RDF prefixes. When a prefix is followed by a colon symbol,
the part after the colon can be appended to the namespace URI, thereby creating a
new URI.

acl http://www.w3.org/ns/auth/acl#

al dynamic (see Custom Vocabulary)

claim urn:claim# (see Custom Vocabulary)

ex example

foaf http://xmlns.com/foaf/0.1/

http http://www.w3.org/2011/http#

interop http://www.w3.org/ns/solid/interop#

ldp http://www.w3.org/ns/ldp#

pim http://www.w3.org/ns/pim/space#

rdfs https://www.w3.org/2000/01/rdf-schema#

solid http://www.w3.org/ns/solid/terms#

st http://www.w3.org/ns/shapetrees#

The prefixes and namespaces enumerated above are applicable to diagrams, list­
ings, and inline listings throughout the entirety of the document.

4 of 26

http://www.w3.org/ns/auth/acl#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2011/http#
http://www.w3.org/ns/solid/interop#
http://www.w3.org/ns/ldp#
http://www.w3.org/ns/pim/space#
https://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/ns/solid/terms#
http://www.w3.org/ns/shapetrees#

Notation
The diagrams in this document were generated using Asciidoctor Diagram 2.3.1[1]

and its bundled PlantUML[2] version.

Unless otherwise specified, all framed diagrams will use the UML 2.5.1[3] standard,
constrained by the limitations of PlantUML. As defined in the standard, the following
abbreviations will be utilized to identify the type of UML diagram:

cmp component diagram

sd interaction diagram

stm state machine diagram

In addition to the UML abbreviation, the following abbreviations are used to identify
non-UML diagrams:

dm data model diagram; The information structure is entirely based on RDF,
and will be presented as entity-relationship diagrams in Clive Finkel­
stein’s IE[4] notation, with some additional elements. The text in the dou­
ble angle brackets will define the entity type (e.g., [Dataset], [Thing], …).
The path labels indicate potential routes through the graph structure,
while the number within the bracket indicates the branch that has been
taken.

wbs work breakdown structure; This diagram is a decompositional diagram[5],
intended for use in hierarchical structures, originally designed as a
project management tool. In this context, it is used to illustrate any kind
of hierarchical structure.

All diagrams and figures presented in this work were created by the author. Any dis­
crepancies have been highlighted in the corresponding figures.

[1] https://docs.asciidoctor.org/diagram-extension/latest/

[2] https://plantuml.com

[3] https://www.omg.org/spec/UML/2.5.1

[4] https://plantuml.com/en/ie-diagram

[5] https://plantuml.com/en/wbs-diagram

5 of 26

https://docs.asciidoctor.org/diagram-extension/latest/
https://plantuml.com
https://www.omg.org/spec/UML/2.5.1
https://plantuml.com/en/ie-diagram
https://plantuml.com/en/wbs-diagram

Chapter 1. Solid Application Interoperability
The Solid Specification outlines the overall framework of the system-wide data
model. Additionally, the Solid Application Interoperability Specification[1], an extension
to the Solid ecosystem, addresses application-independent design and a uniform
mechanism for data discovery. It should be noted that the Specification has not yet
been fully matured or implemented by any Solid Provider. However, it can be used in
part without a full implementation of the Solid extension. The Editor’s Draft of Novem­
ber 7th, 2023 introduces a mechanism for discovering registered data without requir­
ing knowledge of the physical structure of the file system or HTTP endpoints. An
application only needs to be aware of the profile document and follow the suggested
references in the specification. Figure 1 illustrates these entities and relations.
DataType and DataElement represent a selectable data type and element,
respectively.

6 of 26

dm Solid Application Interoperability Data Registry

«Dataset»
foaf:PersonalProfileDocument

id

«Thing»
interop:Agent

interop:hasRegistrySet

«Dataset»
Registry Set

«Thing»
interop:DataRegistry

interop:hasDataRegistration

«Dataset»
interop:DataRegistration

interop:registeredShapeTree

«Dataset»
ldp:Container

ldp:contains

«Dataset»
DataElement

...

«Shape Tree»
DataTypeRegistrationTree

st:contains

«Shape Tree»
DataTypeTree

st:shape

«Shape Expression»
DataTypeShape

...

«Dataset»
DataTypeVocabulary

...

The shape will be satisfied

Path [1]

Path [1]

Path [1,1]

Path [1,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,2]

Path [1,1,2], [1,2,2]

Figure 1. IE diagram of the Solid Application Interoperability Data Registry

7 of 26

The entities and relations in Figure 1 represent a partially implemented data registry
component of the Solid Application Interoperability specification by Bingham et al.
(2023). As described in the specification, an agent must declare an interop:Agent in
the personal profile document to participate in the Solid Application Interoperability
Specification. From there, one can follow the specified path, starting with the registry
set, which is referred from the declared agent. The registry set contains an
interop:DataRegistry, which refers to an interop:DataRegistraion. As
the interop:DataRegistraion resource is a resource container (ldp:Con­
tainer), all contained resources will apply the interop:DataRegistraion
attributes. These attributes are defined in the registered ShapeTree, which is referred
to from the interop:DataRegistraion. The registered ShapeTree defines the
shape of the contained resources, by referring to the Shape. The Shape will point to
a Shape Expression once more. The Shape Expression defines the data types of the
predicates utilized in the vocabulary.

[1] https://solid.github.io/data-interoperability-panel/specification/

8 of 26

https://solid.github.io/data-interoperability-panel/specification/

Chapter 2. Entity-Relationship Model
The Entity-Relationship Model is based on the Solid Application Interoperability
specification and describes the logical arrangement of the system’s data. This
selected part of the specification can be used without further modification while the
specification is still a draft. However, the current state of the specification does not
fully satisfy the needs of a claiming mechanism. Figure 2 illustrates the additions to
the model that are necessary to enable this mechanism. The full model can be found
in Appendix A.

dm Claim Addition

«Dataset»
foaf:PersonalProfileDocument

«Thing»
claim:Verification

claim:verificationCode

«Dataset»
Registry Set

a b 6 7 4 6 5 0

Hash values must be unique, e.g. the
a SHAKE256 encoded storage URL.

«Thing»
interop:DataRegistry

interop:hasDataRegistration

«Thing»
claim:Registry

claim:trustee
claim:monitoredStorage
claim:verificationResource
claim:verificationCode
claim:claimedData

«Dataset»
ldp:Container

ldp:contains

Root of all claimed data.

«Dataset»
interop:DataRegistration

interop:registeredShapeTree

«Dataset»
ldp:Container

ldp:contains

Resource container
for all access logs.

owns

Path [1,1]

Path [1,1,1]Path [1,1,2]

Path [1 ,2]

Path [1 ,2 ,1]

Path [1 ,2 ,1 ,1]Path [1 ,2 ,2]

Path [1 ,2 ,2]

Figure 2. IE diagram of the Claim addition to the Solid Application Interoperability
Data Registry

The model meets the requirements of the Solid Application Interoperability Specifica­
tion, which is omitted in Figure 2. However, as described in Solid Application Interop­
erability, the data discovery will begin from the personal profile document. This docu­
ment declares an interop:Agent, which refers to a registry set. This declaration
informs agents that the data model will be modeled according to the specification.
The registry set contains a list of all references to data registrations. A data registra­
tion is a resource container that contains all resources in a given tree[1] and shape[2].

As the interoperability specification does not address the handling of multi-agent
data or require agents to participate in the specification, some enhancements have
been made to the data model. In Figure 2, the highlighted additions (bold) to the
model include the requirement that Things contained by the registry set must have a
unique identifier based on the claimed item, which in this case is the hashed
(SHAKE256) storage URL. The Thing’s type is claim:Registry, a newly introduced
Claim Vocabulary that will be explained in detail in the Custom Vocabulary section.

9 of 26

The claim:Verification is a resource within the observed storage that serves to
verify using a verification code. This code must correspond to the verification code
within the claim:Registry to authorize the trustee’s access to the claimed data.

[1] https://shapetrees.org/TR/specification/

[2] https://shex.io/shex-semantics/

10 of 26

https://shapetrees.org/TR/specification/
https://shex.io/shex-semantics/

Chapter 3. Information Retrieval
The DPC agent captures, manages, and presents client data. Data can only be
retrieved through the DPC agent. Figure 2 shows five paths through the data struc­
ture. Two of the paths are alternative paths that lead to the same leaf of the graph.
The resulting data that can be received is:

AccessLogShape following path [1,1,1], [1,2,1,1]

AccessLog following path [1,1,2], [1,2,2]

Verification following path [1,2,2]

The bracketed numbers indicate which branch to follow to access the described data.

11 of 26

Chapter 4. Custom Vocabulary
The vocabulary provided by the [Solid Ecosystem] does not cover all the necessary
information that has been introduced in the data model. An custom RDF vocabulary
for the claim process and logging of access has been introduced to support this.

4.1. Claim Vocabulary

Besides the ACL vocabulary, that allows the access granting of resources of a web­
server, there are several other model for processing of restricted data. The ODRL
Information Model[1] for instance, aims to standerize the permission, prohibition, and
obligation of general content. The DPV[2] however enables expressing machine-read­
able metadata about the use and processing of personal data, with focus on the
GDPR[3]. In order to prevent the creation of another information structure besides the
model inherited from the Solid Application Interoperability and the limited options of
integrating these model into the Solid Application Interoperability a custom vocabu­
lary for the claiming mechanism has been introduced.

Listing 1. Custom Vocabulary: Claim

<#Registry>
 a rdfs:Class ;
 rdfs:label "A registry entry for data that has been the subject of a trustee
claim"@en .

<#Verification>
 a rdfs:Class ;
 rdfs:label "A verification resource, located in monitored storage" .

<#trustee>
 a rdf:Property ;
 rdfs:label "The WebID reference of the agent requesting access to the claimed
data"@en .

<#monitoredStorage>
 a rdf:Property ;
 rdfs:label "The observed storage reference"@en .

<#verificationResource>
 a rdf:Property ;
 rdfs:label "The reference to the verification resource in the monitored
storage"@en .

<#verificationCode>
 a rdf:Property ;
 rdfs:label "A random hash in the registry and verification resource"@en .

<#claimedData>
 a rdf:Property ;
 rdfs:label "The reference to the resource container of all claimed data

12 of 26

resources"@en .

The claiming vocabulary presented in Listing 1, provides an illustrative example of
how such a vocabulary might be constructed. However, in the implementation, this
approach has not been employed in an effective manner. For the purposes of mock­
ing, the URL references were sufficient, as the data was not fetched from the vocab­
ulary. Nevertheless, the semantics presented in the listing are accurate. Uses of the
RDF vocabulary are shown in Claim Registry (Data Model) and Verification (Data
Model).

4.2. Access Log Vocabulary

The access log vocabulary is a dynamically generated vocabulary from the agent,
produced in its own context. For instance, the DPC agent generates it at
http://proxy.localhost:4000/dpc/ns/log. This enables each agent to
bring its own vocabulary if necessary. The vocabulary is a condensed and human-
readable form of the HTTP Vocabulary[4]. In order to facilitate comprehension by non-
expert users, the vocabulary was introduced in a simplified form, as illustrated in List­
ing 2.

Listing 2. Custom Vocabulary: Access Log

<#AccessLog>
 a rdfs:Class ;
 rdfs:label "AccessLog"@en .

<#date>
 a rdf:Property ;
 rdfs:label "Accessed at"@en .

<#accessor>
 a rdf:Property ;
 rdfs:label "Accessing agent"@en .

<#application>
 a rdf:Property ;
 rdfs:label "Accessing application"@en .

<#resource>
 a rdf:Property ;
 rdfs:label "Accessed resource"@en .

<#action>
 a rdf:Property ;
 rdfs:label "Action"@en .

The relationship between the HTTP Vocabulary and the data is that the majority of
the data originates from a regular request object. For instance, al:resource

13 of 26

http://proxy.localhost:4000/dpc/ns/log

matches the http:absolutePath property. As the vocabulary is custom, addi­
tional processing has been introduced. al:action, which matches the
http:methodName, such as POST, GET, etc., has been converted to CRUD opera­
tions. al:accessor is a part of the serialized authorization header, equivalent to
http:RequestHeader. Finally, the al:application property is intended to dis­
play the application name that appears when a Solid application is requesting data
access. When granting access, the token is stored and associated with each autho­
rized request. However, this technique is only effective when using the [Authorization
Code Flow] authorization method.

It is also noteworthy that al:accessor and al:application may be absent in
certain instances. To illustrate, if a resource is accessible to the general public, there
is no authorized request and thus no requesting agent or logged-in Solid application.

The utilization of the RDF vocabulary is illustrated in Access Log (Data Model).

[1] https://www.w3.org/TR/odrl-model/

[2] https://w3c.github.io/dpv/dpv/

[3] https://eur-lex.europa.eu/eli/reg/2016/679/oj

[4] https://www.w3.org/TR/HTTP-in-RDF/

14 of 26

https://www.w3.org/TR/odrl-model/
https://w3c.github.io/dpv/dpv/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.w3.org/TR/HTTP-in-RDF/

Chapter 5. Serialized Data Model
Before looking at the serialized model, it is important to understand the structure of
the HTTP endpoints. The storage URLs for the HTTP APIs will begin with a storage
identifier added as a suffix to the base URL. Figure 3 shows the storage URLs at the
second level. The data of the corresponding agent will be represented below this
node.

wbs Server Container Hierarchy

/cl ient

/dpc

/dpc

/data

/74242fac

AccessLog

2024-04-02

/ns

/log

/log.shex

/log.tree

/profile

/card

/registr ies

http:/ /proxy.localhost:4000
(Base URL)

Figure 3. The structure of the HTTP endpoints

The two most commonly used serialization formats for RDF-based data in data-dri­
ven web-based systems are text/turtle and application/ld+json. This
inspection does not focus on data storage, as the [Solid Provider] is considered
replaceable. However, HTTP APIs use Turtle as the exchange format for communica­

15 of 26

tion, which will be displayed below. As part of the structural hierarchy shown in Fig­
ure 3, all resources and listings refer to the data model shown in Figure 2.

5.1. Personal Profile Document (Data Model)

To participate in the Solid Application Interoperability Specification, an
interop:Agent must be declared in the profile document. This node will also refer
to the registry set. Listing 3 presents the corresponding RDF fragment.

Listing 3. interop:Agent [Thing] at http://proxy.localhost:4000/dpc/profile/card

<#id>
 a interop:Agent ; ①
 interop:hasRegistrySet <http://proxy.localhost:4000/dpc/registries> . ②

① Declaration as interop:Agent.

② Reference to the registry set.

 Followed Path [1]

5.2. Registry Set (Data Model)

The registry set contains an entry for each agent who has claimed data captured by
the DPC agent. This captured data will be referred to as data registration. The sub­
ject of the RDF triple, however, must be unique and built based on the claimed sub­
ject. In this case, it will be the hashed storage URL. Listing 4 presents the corre­
sponding RDF fragment.

Listing 4. interop:DataRegistry [Thing] at
http://proxy.localhost:4000/dpc/registries

<#ab674650> ①
 a interop:DataRegistry;
 interop:hasDataRegistration
<http://proxy.localhost:4000/dpc/data/74242fac/AccessLog/>.

① The hashed (SHAKE256) storage URL.

 Followed Path [1,1]

5.3. Data Registration (Data Model)

The Shape Tree data is referenced in the data registration. As it is a container
resource (see Container (Access Logs from Data Model)), all child resources will sat­
isfy the referenced Shape Tree. Listing 5 presents the corresponding RDF fragment.

16 of 26

http://proxy.localhost:4000/dpc/profile/card
http://proxy.localhost:4000/dpc/registries

Listing 5. interop:DataRegistration [Thing] at
http://proxy.localhost:4000/dpc/data/74242fac/AccessLog/

<>
 a interop:DataRegistration ;
 interop:registeredBy <http://proxy.localhost:4000/dpc/profile/card#id> ;
 interop:registeredAt "2024-04-02T16:00:09.959Z"^^xsd:dateTime ;
 interop:registeredShapeTree
<http://proxy.localhost:4000/dpc/ns/log.tree#AccessLogRegistrationTree> . ①

① The referenced Shape Tree.

 Followed Path [1,1,1], [1,2,1,1]

5.4. Shape Trees (Data Model)

Both Shape Trees, AccessLogRegistrationTree, and AccessLogTree define
the contents of the referring [container_resource]. The AccessLogRegistra­
tionTree defines the resources that contain Shape Tree Resources in a given
shape. The referenced Shape Expression declares the form of the shape. Listing 6
presents the corresponding ShapeTree fragment.

Listing 6. Shape Tree at http://proxy.localhost:4000/dpc/ns/log.tree

PREFIX st: <http://www.w3.org/ns/shapetrees#> .
PREFIX log-shex: <http://proxy.localhost:4000/dpc/ns/log.shex#>.

<#AccessLogRegistrationTree>
 a st:ShapeTree ;
 st:expectsType st:Container ;
 st:contains <#AccessLogTree> . ①

<#AccessLogTree>
 a st:ShapeTree ;
 st:expectsType st:Resource ;
 st:shape log-shex:AccessLogShape . ②

① The internal reference to AccessLogTree

② The reference to the Shape Expression (Data Model)

 Followed Path [1,1,1], [1,2,1,1]

5.5. Shape Expression (Data Model)

ShEx defines the schema for every literal associated with a predicate of the vocabu­
lary. The RDF vocabulary will not be listed further. Listing 7 presents the correspond­
ing ShEx fragment.

17 of 26

http://proxy.localhost:4000/dpc/data/74242fac/AccessLog/
http://proxy.localhost:4000/dpc/ns/log.tree

Listing 7. Shape Expression

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xml: <http://www.w3.org/XML/1998/namespace>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX shx: <http://www.w3.org/ns/shex#>
PREFIX log: <http://proxy.localhost:4000/dpc/ns/log#>

<#AccessLogShape> {
 log:date xsd:dateTime ;
 log:accessor IRI ;
 log:application xsd:string ;
 log:application xsd:string ;
 log:resource xsd:string ;
 log:action xsd:string
}

 Followed Path [1,1,1], [1,2,1,1]

5.6. Container (Access Logs from Data Model)

As explained in the Data Registration (Data Model) section, this container resource
corresponds to the interop:DataRegistration definition. The files contained
within it meet the specified definitions. For example, the file dated 2024-04-02 will be
referred to as Access Log (Data Model), matching the Shape Expression (Data
Model). Listing 8 presents the corresponding RDF fragment.

Listing 8. ldp:Container [Thing] at
http://proxy.localhost:4000/dpc/data/74242fac/AccessLog/

<>
 a ldp:Container, ldp:BasicContainer, ldp:Resource ;
 ldp:contains <2024-04-02> .

 Followed Path [1,1,2], [1,2,2]

5.7. Access Log (Data Model)

The access log is a resource that contains the actual data and satisfies the shape as
defined in the Shape Expression (Data Model). Listing 9 presents the corresponding
RDF fragment.

Listing 9. ldp:Container [Thing] at
http://proxy.localhost:4000/dpc/data/74242fac/AccessLog/2024-04-02

@prefix al: <http://proxy.localhost:4000/dpc/ns/log#>.

18 of 26

http://proxy.localhost:4000/dpc/data/74242fac/AccessLog/
http://proxy.localhost:4000/dpc/data/74242fac/AccessLog/2024-04-02

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<#1712073817394>
 a al:AccessLog ;
 al:date "2024-04-02T16:03:37.426Z"^^xsd:dateTime ;
 al:accessor "http://proxy.localhost:4000/dpc/profile/card#me" ;
 al:application "Data Privacy Cockpit" ;
 al:action "READ" ;
 al:resource "/client/dpc" .

 Followed Path [1,1,2], [1,2,2]

5.8. Claim Registry (Data Model)

The claim registry is an custom extension of the interorp:DataRegistry within
the registry set. It refers to the root container for claimed data and the verification
resource. Listing 10 presents the corresponding RDF fragment.

Listing 10. claim:Registry [Thing] at http://proxy.localhost:4000/dpc/registries

<#ab674650>
 a claim:Registry;
 claim:trustee <http://proxy.localhost:4000/client/profile/card#me>;
 claim:monitoredStorage <http://proxy.localhost:4000/client/>;
 claim:verificationResource <http://proxy.localhost:4000/client/dpc#verification>;
 claim:verificationCode "66097db6e9c3c234eb35f8ca66b5e4d829c6d...";
 claim:claimedData <http://proxy.localhost:4000/dpc/data/74242fac/>.

 Followed Path [1,2]

5.9. Container (Claimed Data from Data Model)

This resource contains all claimed data. When using the Solid Application Interoper­
ability Specification, it primarily refers to data registrations and their corresponding
containers. Listing 11 presents the corresponding RDF fragment.

Listing 11. ldp:Container [Thing] at
http://proxy.localhost:4000/dpc/data/74242fac/

<>
 a ldp:Container, ldp:BasicContainer, ldp:Resource ;
 ldp:contains <2024-04-02> .

 Followed Path [1,2,1]

19 of 26

http://proxy.localhost:4000/dpc/registries
http://proxy.localhost:4000/dpc/data/74242fac/

5.10. Verification (Data Model)

The verification resource shown in Figure 3 is the only resource stored by the client
and will be used for comparison purposes. The verification code will be compared to
the verification code of the claim registry. If they are equivalent, access to the
claimed data will be granted. Listing 12 presents the corresponding RDF fragment.

Listing 12. claim:Verification [Thing] at at http://proxy.localhost:4000/client/dpc

<#verification>
 a <urn:claim#Verification> ;
 <urn:claim#verificationCode> "66097db6e9c3c234eb35f8ca66b5e4d829c6d..." .

 Followed Path [1,2,2]

Each of the mentioned resources must have a corresponding ACL. The lists have
been intentionally omitted for simplicity. The DPC agent requires read and write
access to all of these resources. The only exception is the verification resource,
which only needs to be read.

20 of 26

http://proxy.localhost:4000/client/dpc

Appendix A: Full Logical Data Model
dm Solid Application Interoperability Data Registry with Claim Addition

«Dataset»
foaf:PersonalProfileDocument

The profile of the any client agent

«Thing»
claim:Verification

claim:verificationCode

«Dataset»
foaf:PersonalProfileDocument

id

The profile of the DPC agent

«Thing»
interop:Agent

interop:hasRegistrySet

«Dataset»
Registry Set

a b 6 7 4 6 5 0

Hash values must be unique, e.g. the
a SHAKE256 encoded storage URL.

«Thing»
interop:DataRegistry

interop:hasDataRegistration

«Thing»
claim:Registry

claim:trustee
claim:monitoredStorage
claim:verificationResource
claim:verificationCode
claim:claimedData

«Dataset»
ldp:Container

ldp:contains

Root of all claimed data.

«Dataset»
interop:DataRegistration

interop:registeredShapeTree

«Dataset»
ldp:Container

ldp:contains

Resource container
for all access logs.

«Dataset»
AccessLog

...

«Shape Tree»
AccessLogRegistrationTree

st:contains

«Shape Tree»
AccessLogTree

st:shape

«Shape Expression»
AccessLogShape

...

«Dataset»
AccessLogVocabulary

...

The shape will be satisfied

owns

Path [1]

Path [1]

Path [1,1]

Path [1,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,1], [1,2,1,1]

Path [1,1,2]

Path [1,1,2], [1,2,2]

Path [1 ,2]

Path [1 ,2 ,1]

Path [1 ,2 ,1 ,1]Path [1 ,2 ,2]

Path [1 ,2 ,2]

Figure 4. IE diagram of the full logical data model

21 of 26

Appendix B: Community Solid Server Configuration
Listing 13. Community Solid Server Configuration

{
 "@context": "https://linkedsoftwaredependencies.org/bundles/npm/@solid/community-
server/^7.0.0/components/context.jsonld",
 "import": [
 "css:config/app/init/default.json",
 "css:config/app/main/default.json",
 "css:config/app/variables/default.json",
 "css:config/http/handler/default.json",
 "css:config/http/middleware/default.json",
 "css:config/http/notifications/all.json",
 "css:config/http/server-factory/http.json",
 "css:config/http/static/default.json",
 "css:config/identity/access/public.json",
 "css:config/identity/email/default.json",
 "css:config/identity/handler/default.json",
 "css:config/identity/oidc/default.json",
 "css:config/identity/ownership/token.json",
 "css:config/identity/pod/static.json",
 "css:config/ldp/authentication/dpop-bearer.json",
 "css:config/ldp/authorization/webacl.json",
 "css:config/ldp/handler/default.json",
 "css:config/ldp/metadata-parser/default.json",
 "css:config/ldp/metadata-writer/default.json",
 "css:config/ldp/modes/default.json",
 "css:config/storage/backend/file.json",
 "css:config/storage/key-value/resource-store.json",
 "css:config/storage/location/pod.json",
 "css:config/storage/middleware/default.json",
 "css:config/util/auxiliary/acl.json",
 "css:config/util/identifiers/suffix.json",
 "css:config/util/index/default.json",
 "css:config/util/logging/winston.json",
 "css:config/util/representation-conversion/default.json",
 "css:config/util/resource-locker/file.json",
 "css:config/util/variables/default.json"
],
 "@graph": [
 {
 "comment": "The updated OIDC configuration.",
 "@type": "Override",
 "overrideInstance": {
 "@id": "urn:solid-server:default:IdentityProviderFactory"
 },
 "overrideParameters": {
 "@type": "IdentityProviderFactory",
 "config": {
 "claims": {
 "openid": [
 "azp"

22 of 26

],
 "webid": [
 "webid"
]
 },
 "clockTolerance": 120,
 "cookies": {
 "long": {
 "signed": true,
 "maxAge": 86400000
 },
 "short": {
 "signed": true
 }
 },
 "enabledJWA": {
 "dPoPSigningAlgValues": [
 "RS256",
 "RS384",
 "RS512",
 "PS256",
 "PS384",
 "PS512",
 "ES256",
 "ES256K",
 "ES384",
 "ES512",
 "EdDSA"
]
 },
 "features": {
 "claimsParameter": {
 "enabled": true
 },
 "clientCredentials": {
 "enabled": true
 },
 "devInteractions": {
 "enabled": false
 },
 "dPoP": {
 "enabled": true
 },
 "introspection": {
 "enabled": true
 },
 "registration": {
 "enabled": true
 },
 "revocation": {
 "enabled": true
 },
 "userinfo": {
 "enabled": false

23 of 26

 }
 },
 "scopes": [
 "openid",
 "profile",
 "offline_access",
 "webid"
],
 "subjectTypes": [
 "public"
],
 "ttl": {
 "AccessToken": 3600,
 "AuthorizationCode": 600,
 "BackchannelAuthenticationRequest": 600,
 "ClientCredentials": 172800000,
 "DeviceCode": 600,
 "Grant": 1209600,
 "IdToken": 3600,
 "Interaction": 3600,
 "RefreshToken": 86400,
 "Session": 1209600
 }
 }
 }
 },
 {
 "comment": "The new expiration time for inactive locks, in milliseconds.",
 "@type": "Override",
 "overrideInstance": {
 "@id": "urn:solid-server:default:ResourceLocker"
 },
 "overrideParameters": {
 "@type": "WrappedExpiringReadWriteLocker",
 "expiration": 172800000
 }
 }
]
}

24 of 26

Bibliography
Bingham, J., Prud’hommeaux, E., & Pavlik, elf. (2023). Solid Application Interoper­
ability. https://solid.github.io/data-interoperability-panel/specification/

25 of 26

https://solid.github.io/data-interoperability-panel/specification/

Colophon
Built with Asciidoctor PDF 2.3.18, Asciidoctor Bibtex 0.9.0 and Asciidoctor Diagram
2.3.1 on linux-musl.

Repository https://github.com/guddii/SEACT/tree/34-docs-excerpt

Revision https://github.com/guddii/SEACT/commit/43554df37fcee739fad09
3318958851a3f1b611d

Build https://github.com/guddii/SEACT/actions/runs/10292410494

26 of 26

https://github.com/guddii/SEACT/tree/34-docs-excerpt
https://github.com/guddii/SEACT/commit/43554df37fcee739fad093318958851a3f1b611d
https://github.com/guddii/SEACT/commit/43554df37fcee739fad093318958851a3f1b611d
https://github.com/guddii/SEACT/actions/runs/10292410494

	Data Model
	Table of Contents
	Acronyms
	Namespaces
	Notation
	Chapter 1. Solid Application Interoperability
	Chapter 2. Entity-Relationship Model
	Chapter 3. Information Retrieval
	Chapter 4. Custom Vocabulary
	Chapter 5. Serialized Data Model
	Appendix A: Full Logical Data Model
	Appendix B: Community Solid Server Configuration
	Bibliography
	Colophon

