
System Behavior

Florian Gudat

Version 43554df, 2024-08-07

Table of Contents

Acronyms . 2

Namespaces. 4

Notation . 5

1. Process Entries . 6

2. Process References . 11

Bibliography . 19

Colophon . 20

Version

43554df, 2024-08-07

Editor

Florian Gudat

Module

Mastermodul (C533.2 Compulsory module)
https://modulux.htwk-leipzig.de/modulux/modul/6291

Module Supervisor

Prof. Dr.-Ing. Jean-Alexander Müller

Lecturer

Herr Prof. Dr. rer. nat. Andreas Both
Herr M. Sc. Michael Schmeißer

Institute

Leipzig University of Applied Sciences

Faculty

Computer Science and Media

1 of 20

https://modulux.htwk-leipzig.de/modulux/modul/6291

Acronyms

ACL Access Control List

ACP Access Control Policy

API Application Programming Interface

CRUD Create, Read, Update and Delete

CSS Community Solid Server

DNS Domain Name System

DPC Data Privacy Cockpit

DPV Data Privacy Vocabulary

DPoP Demonstration of Proof-of-Possession

ESS Enterprise Solid Server

GDPR General Data Protection Regulation

HTTPS Hypertext Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

IBM International Business Machines

IEC International Electrotechnical Commission

IE Information Engineering

IP Internet Protocol

ISO International Organization for Standardization

LTS Long-Term Support

N/A Not Applicable

ODRL Open Digital Rights Language

OIDC OpenID Connect

OSI Open Systems Interconnection

RDF Resource Description Framework

2 of 20

ROA Resource-Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Language

ShEx Shape Expressions

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAC Web Access Control

3 of 20

Namespaces
This enumeration lists the prefixes and the associated namespace. It will be used as
the standard syntax for RDF prefixes. When a prefix is followed by a colon symbol,
the part after the colon can be appended to the namespace URI, thereby creating a
new URI.

acl http://www.w3.org/ns/auth/acl#

al dynamic (see [Custom Vocabulary])

claim urn:claim# (see [Custom Vocabulary])

ex example

foaf http://xmlns.com/foaf/0.1/

http http://www.w3.org/2011/http#

interop http://www.w3.org/ns/solid/interop#

ldp http://www.w3.org/ns/ldp#

pim http://www.w3.org/ns/pim/space#

rdfs https://www.w3.org/2000/01/rdf-schema#

solid http://www.w3.org/ns/solid/terms#

st http://www.w3.org/ns/shapetrees#

The prefixes and namespaces enumerated above are applicable to diagrams, list
ings, and inline listings throughout the entirety of the document.

4 of 20

http://www.w3.org/ns/auth/acl#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2011/http#
http://www.w3.org/ns/solid/interop#
http://www.w3.org/ns/ldp#
http://www.w3.org/ns/pim/space#
https://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/ns/solid/terms#
http://www.w3.org/ns/shapetrees#

Notation
The diagrams in this document were generated using Asciidoctor Diagram 2.3.1[1]

and its bundled PlantUML[2] version.

Unless otherwise specified, all framed diagrams will use the UML 2.5.1[3] standard,
constrained by the limitations of PlantUML. As defined in the standard, the following
abbreviations will be utilized to identify the type of UML diagram:

cmp component diagram

sd interaction diagram

stm state machine diagram

In addition to the UML abbreviation, the following abbreviations are used to identify
non-UML diagrams:

dm data model diagram; The information structure is entirely based on RDF,
and will be presented as entity-relationship diagrams in Clive Finkel
stein’s IE[4] notation, with some additional elements. The text in the dou
ble angle brackets will define the entity type (e.g., [Dataset], [Thing], …).
The path labels indicate potential routes through the graph structure,
while the number within the bracket indicates the branch that has been
taken.

wbs work breakdown structure; This diagram is a decompositional diagram[5],
intended for use in hierarchical structures, originally designed as a
project management tool. In this context, it is used to illustrate any kind
of hierarchical structure.

All diagrams and figures presented in this work were created by the author. Any dis
crepancies have been highlighted in the corresponding figures.

[1] https://docs.asciidoctor.org/diagram-extension/latest/

[2] https://plantuml.com

[3] https://www.omg.org/spec/UML/2.5.1

[4] https://plantuml.com/en/ie-diagram

[5] https://plantuml.com/en/wbs-diagram

5 of 20

https://docs.asciidoctor.org/diagram-extension/latest/
https://plantuml.com
https://www.omg.org/spec/UML/2.5.1
https://plantuml.com/en/ie-diagram
https://plantuml.com/en/wbs-diagram

Chapter 1. Process Entries
There are three main behaviors that reflect interactions that can be executed directly
or indirectly by the client: CRUD requests to a given resource, claiming log data, and
discovering this data. The reference section defines subsequences that may be used
in each of these interactions.

1.1. Authorised CRUD Requests

The process of authorizing a request can be divided into two steps. Firstly, an autho
rization token will be requested using an Authorization Client Credentials Flow or an
alternative authorization process such as an Authorization Code Flow. Secondly, the
CRUD request will be sent with an authorization header and the response will be
provided accordingly. The key difference is that the request and response will be for
warded by the proxy instance. Figure 1 provides an illustration of this process.

sd Authorised CRUD Requests

Client

Client

Proxy

Proxy

Server

Server

ref
Authorization Client Credentials Flow (CLIENT)

[1] CRUD Request

ref
Forwarded Request

[2] Forwarded server response

Figure 1. Sequence diagram of an authorized CRUD request

All requests can be executed with any HTTP client that supports the Solid Protocol.
To demonstrate this, a simple web HTTP client has been introduced in this project,
as shown in Figure 2.

6 of 20

Figure 2. Screenshot of a Solid HTTP Client UI.

1.2. Log Claiming

Network logs are captured by storage, not by WebID, and it is necessary to associate
the data with a WebID at some point to make it readable to the owner. This is done
by a claiming mechanism. This requires a Solid application that has access to both
the user storage and the DPC storage. Both connections are handled by the DPC
API server, and when the connections are established, the API initializes an verifica
tion code on behalf of the client agent to be verified by the DPC API server when it
discovers the logs. Figure 3 provides an illustration of this process.

7 of 20

sd Log Claiming

DPC Client

DPC Client

DPC API

DPC API

Proxy

Proxy

Server

Server

[1] GET Login

ref
Authorization Code Flow

[2] Success response

[3] PUT Claim a storages

ref
Initialize a Verification Code

[4] Verification code

Figure 3. Sequence diagram of the log claiming process

The process of claiming access logs is relatively straightforward, requiring only a sin
gle form input in the UI. When an agent is logged in, the related storage can be
detected automatically. If not, the input field allows custom URL input. Upon submis
sion, the rest of the process occurs in the background. Figure 4 presents a screen
shot of this UI.

Figure 4. Screenshot of a DPC Client UI while claiming the access logs.

8 of 20

1.3. Log Discovery

The logs in the DPC API server are represented as routes. These routes will either
return an empty turtle file or attempt to resolve the claim and receive the actual files
from the claimed storages. Figure 5 provides an illustration of this process.

sd Log Discovery (resource)

DPC Client

DPC Client

DPC API

DPC API

Proxy

Proxy

Server

Server

[1] GET Login

ref
Authorization Code Flow

[2] Success response

[3] GET Claimed resource

ref
Get claimed resource

[4] Turtle response

Figure 5. Sequence diagram of the discovery of logs

Upon successful claiming of an access log container, the agent is presented with a
view of the logged entries. This view is represented by a table, as illustrated in Figure
6.

9 of 20

Figure 6. Screenshot of a DPC Client UI listing the access logs.

10 of 20

Chapter 2. Process References

2.1. Authorization Client Credentials Flow

The authorization client credentials flow, is a authorization technique defined in RFC
6749, Section 4.4[1]. To obtain the authorization token, send a POST request to the
authorization server with the client ID and secret in the authentication header. It is
also necessary to set the grant type to client_credentials and the scope to
webid. The proxy will forward requests as every CRUD request because the autho
rization server is not directly accessible. Figure 7 provides an illustration of this
process.

sd Authorization Client Credentials Flow (agent)

Proxy

Proxy

Server

Server

[1] POST Request agent authorization token

ref
Forwarded Request

[2] Agent authorization token

Figure 7. Sequence diagram of the authentication using client credentials

2.2. Authorization Code Flow

Another authorization technique is the authorization code flow, as defined in RFC
6749, Section 4.1[2]. It is important to note that this technique differs from a Autho
rization Client Credentials Flow, especially in the way that redirects are part of this
flow. This means that user inputs are required in this technique and they cannot run
automated.

2.3. Forwarded Request

Request forwarding is quite simple, the proxy receives a CRUD request that is
passed through the server. The returning server response will take the path back to
the original requester. Since the requester can be the proxy itself, there needs to be
some kind of guard to prevent infinite recursive calls. If the requester is someone
other than the proxy, the Data Privacy Cockpit middleware can be executed. In cer
tain cases, it may be necessary to read and evaluate the server response, which can
be done during a response interception[3] step. In this process, a pair of client ID and
the name of the registered web application, which were submitted during the OIDC

11 of 20

process, is stored. This information can be utilized in authorized requests by pro
cessing the authorization token and retrieving the client ID from the store to obtain
the corresponding application name. Figure 8 provides an illustration of this process.

sd Forwarded Request

Proxy

Proxy

Server

Server

[1] CRUD Request

opt [isLoggableRequest]

[2] Process authorisation token

ref
DPC Middleware

[3] CRUD Request

[4] Server response

opt [isLoggableRequest]

[5] Response Interception

[6] Server response

Figure 8. Sequence diagram of the request being forwarded by the proxy

2.4. DPC Middleware

The Data Privacy Cockpit is a Solid application that requires a dedicated agent and
client credentials. The agent must log in before any other actions can be executed. If
successful, the container resources of the requested resource will be searched until
the corresponding storage is found or no more container resources are left to search.
If a storage is found, access logs will be created or updated. Figure 9 provides an
illustration of this process.

12 of 20

sd DPC Middleware

Proxy

Proxy

Server

Server

ref
Authorization Client Credentials Flow (DPC)

loop [hasContainerResources]

[1] HEAD Request closest container resource

ref
Forwarded Request

break [existStorageInResponseHeader]

ref
Lookup Claim Data in Registry

[2] Get access log container url from registry data

opt [existAccessLogContainerUrl]

ref
Create Dynamic Namespace

ref
Create or Update Dataset ("/yyyy-mm-dd" , accessLogData)

Figure 9. Sequence diagram of the Data Privacy Cockpit middleware

2.5. Lookup Claim Data in Registry

The process of retrieving claimed data follows the data discovery outlined in the
Solid Application Interoperability specification. If the data does not already exist, it
will be created. Finally, the registry data will be filtered from the set of data and
returned. Figure 10 provides an illustration of this process.

13 of 20

sd Lookup Claim Data in Registry

Proxy

Proxy

Server

Server

[1] GET Registry data

ref
Authorization Client Credentials Flow (DPC)

ref
Create or Update Dataset ("/dpc/profi le/card#id" , interopAgentData)

ref
Create or Update Dataset ("/dpc/registr ies" , claimData)

ref
Create or Update Dataset ("/dpc/registr ies" , interopDataRegistrationData)

[2] Find registry by monitored storage

[3] Registry data

Figure 10. Sequence diagram of the claim data lookup

2.6. Create Dynamic Namespace

A process will be initiated to create the [Access Log Vocabulary] and related Shape
Tree and ShEx resources on the server in a dynamic manner during runtime. This
process will occur within the individual storage resource of the module agent. Fur
thermore, the ACL resources will be added with access privileges set to public
accessibility.

2.7. Create or Update Dataset

The update of a dataset begins with a test to determine if the resource already exists
on the server. If it does, it will be received as a dataset. Otherwise, a new dataset will
be created. The dataset will be enriched with new data and stored on the server. Fig
ure 11 provides an illustration of this process.

14 of 20

sd Create or Update Dataset (resource, data)

Proxy

Proxy

Server

Server

[1] GET Request for current state of the resource

ref
Forwarded Request

opt [hasClientErrorResponse]

[2] Create new dataset

[3] Apply data to dataset

[4] POST Dataset to the resource location

ref
Forwarded Request

Figure 11. Sequence diagram of an access log resource update

2.8. Initialize a Verification Code

To initialize a verification code, start by generating a random key. The DPC API will
store the verification code, storage, WebID, and additional data in a location accessi
ble to the DPC agent for later verification. If the DPC API cannot access the client’s
storage, the process will terminate without adding data to the DPC storage. Figure
12 provides an illustration of this process.

15 of 20

sd Initialize a Verification Code

DPC API

DPC API

Proxy

Proxy

Server

Server

[1] Generate verification code

ref
Write Verification Code to Client Storage

opt [noPreviousErrors]

ref
Write Verification Code to DPC Storage

Figure 12. Sequence diagram of initializing a verification code

2.9. Write Verification Code to Client Storage

Writing the verification code consists of two steps. The first step is to write the verifi
cation code to the client’s storage. Since the code must be read by the DPC agent,
the second step is to grant read permissions for the agent. Figure 13 provides an
illustration of this process.

sd Write Verification Code to Client Storage

DPC API

DPC API

Proxy

Proxy

Server

Server

[1] PUT Verification code to the storage to be claimed

ref
Forwarded Request

[2] Success response

[3] PUT Verification code read permissions for DPC agent

ref
Forwarded Request

[4] Success response

Figure 13. Sequence diagram of writing a verification code to the clients' storage

16 of 20

2.10. Write Verification Code to DPC Storage

Before writing the verification code to the DPC storage, the agent must first verify
their identity. After authorization, a new claim containing the verification code and
associated storage will be added to the list of claims, along with the storage-related
claims in the registry. Figure 14 provides an illustration of this process.

sd Write Verification Code to DPC Storage

DPC API

DPC API

Proxy

Proxy

Server

Server

ref
Authorization Client Credentials Flow (DPC)

[1] PUT New resource container for registry data

ref
Forwarded Request

[2] Turtle reference

ref
Lookup Claim Data in Registry

Figure 14. Sequence diagram of writing a verification code to the DPC storage

2.11. Get Claimed Resource

The process of obtaining a claimed resource will be managed by the DPC agent.
The WebID from the active client session will be used to retrieve the claims from the
registry, along with the storage and verification code for that claim. The DPC agent
will then retrieve the verification code from the storage. If both verification codes
match, the request will be forwarded by the DPC agent. Figure 15 provides an illus
tration of this process.

17 of 20

sd Get Claimed Resource (resource)

DPC API

DPC API

Proxy

Proxy

Server

Server

ref
Authorization Client Credentials Flow (DPC)

ref
Lookup Claim Data in Registry

[1] GET Verification code from verification resource

ref
Forwarded Request

DPC agent must have
read permissions

[2] Verification code

opt [equivalentVer i f icat ionCodes]

[3] GET the requested resource from claim data path

ref
Forwarded Request

[4] Any response

Figure 15. Sequence diagram of how to get a claimed resource

[1] https://datatracker.ietf.org/doc/html/rfc6749#section-4.4

[2] https://datatracker.ietf.org/doc/html/rfc6749#section-4.1

[3] https://github.com/chimurai/http-proxy-middleware/blob/master/recipes/response-interceptor.md

18 of 20

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://github.com/chimurai/http-proxy-middleware/blob/master/recipes/response-interceptor.md

Bibliography

19 of 20

Colophon
Built with Asciidoctor PDF 2.3.18, Asciidoctor Bibtex 0.9.0 and Asciidoctor Diagram
2.3.1 on linux-musl.

Repository https://github.com/guddii/SEACT/tree/34-docs-excerpt

Revision https://github.com/guddii/SEACT/commit/43554df37fcee739fad09
3318958851a3f1b611d

Build https://github.com/guddii/SEACT/actions/runs/10292410494

20 of 20

https://github.com/guddii/SEACT/tree/34-docs-excerpt
https://github.com/guddii/SEACT/commit/43554df37fcee739fad093318958851a3f1b611d
https://github.com/guddii/SEACT/commit/43554df37fcee739fad093318958851a3f1b611d
https://github.com/guddii/SEACT/actions/runs/10292410494

	System Behavior
	Table of Contents
	Acronyms
	Namespaces
	Notation
	Chapter 1. Process Entries
	Chapter 2. Process References
	Bibliography
	Colophon

